

 Date: 2004-08-19
: Revision: DRAFT
 Page 1 of 14

The EzcContainer: Reference and User’s Guide
Revision History

Revision Datum Desription By
DRAFT 2004-08-17 Created Jens Wyke

1. Introduction
The EzcContainer is an implementation of the popular Inversion-of-control (or IOC) design pattern. Others
and more well-known IOC implementations include PicoContainer, Spring Framework, Apache HiveMind
and Apache Avalon.

When developing an application, the EzcContainer can be used as a mechanism through which the
different functional components of the application are instantiated, configured (e.g. by reading parameters
from a configuration file) and invoked. The container also manages the dependencies between
components through dependency injection. Dependency injection means that the container provides, at
instantiation time, each registered component with access only to those components (which are also
registered in the container) with which it needs to collaborate. In the IOC pattern the responsibility for
knowing how to gain access to dependencies does not lie with the individual components but is a job for
the container.

This document is both a documentation of the EzcContainer’s overall design and implementation and a
guide on how it can be used when developing applications.

The document does not however, particularly go into describing and explaining the reasons for using
IoC/Dependency Injection as these are nicely described elsewhere, please see resources.

The EzcContainer source can be found at: FIXME

1.1 Resources
[1] Inversion of Control Containers and the Dependency Injection pattern (Martin Fowler)

http://martinfowler.com/articles/injection.html

[2] The Spring Framework
http://www.springframework.org

[3] PicoContainer
http://picocontainer.codehaus.org/

[4] Apache Avalon
http://avalon.apache.org/

[5] Apache HiveMind
http://jakarta.apache.org/hivemind/

1.2 Terminology
Definition of terms used in this text.

• Business Application
Throughout this text, the term Business Application refers informally to a software system which
may potentially make use of the EzcContainer as a way to achieve its goals. Example: “A
Business Application may use an EzcContainer to manage initialization, configuration and
component dependencies”.

 Date: 2004-08-19
: Revision: DRAFT
 Page 2 of 14

2. The EzcContainer
This chapter describes the overall design of EzcContainer. Key features and principles are highlighted.
Each public class and interface is described as are important concepts such as component
dependencies, sub-containers, instantiation of components etc. In addition to the descriptions of classes
and interfaces (static view) there are also some illustration on how they work together (dynamic view)
during initialization and application runtime.

2.1 Key features
• Agnostic about what constitutes a component, except that each component MUST provide its

functionality through one or more Java Interfaces and one Java Class

• Simple API (one method: addComponent) for initialization using Groovy, plain Java or your
custom-built mechanism.

• Obvious rules for component dependencies – the EzcContainer does not try to apply any
intelligence in “resolving” component dependencies. This makes configuration straight-forward.

• Easy and non-intrusive to use in Business Applications – only one application-specific class need
to be aware of the fact that EzcContainer is used at all.

• Does component registration, initiation, and dependency injection only; EzcContainer does not
provide any framework to aid with issues specific to J2EE or other development environments.

• Supports the use of nesting containers.

• Few dependencies to external tools and libraries (except for configuration using Groovy, which is

optional, no dependencies except J2SE 1.3 exists).

• Less than 1000 lines of code, compiled jar less than 15Kb

2.2 Important Abstractions
The diagram below illustrates the main parts of the EzcContainer design and how they are statically
related. In the following subsections, each of them is described. This section concentrates on explaining
the aspects of the design which are visible to the user (the Business Application where EzcContainer is
used). The inner workings of the class EzcContainer, which is responsible for most part of the
functionality, are not covered here.

 Date: 2004-08-19
: Revision: DRAFT
 Page 3 of 14

2.2.1 ContainerContext and DefaultContainerContext
A ContainerContext provides an EzcContainer with callbacks which are invoked at certain events
in the EzcContainer runtime. Most importantly, there are callbacks to handle creation and initiation of
component instances according to the component definition used by the application in question. Other
callbacks include methods to allow the EzcContainer to perform its logging using the logging toolkit
choosen by your application.

The class DefaultContainerContext is a default implementation of the ContainerContext
interface, it is used by the EzcContainer unless another ContainerContext is specified. The
DefaultContainerContext sends logging output to System.out and assumes that a component is
any Java Bean (i.e: No-arg constructor and dependency injection and configuration through java bean
style setter methods).

2.2.2 EzcException
Whenever something fails within the EzcContainer an EzcException, which is a RuntimException,
will be thrown providing a message detailing what the problem.

2.2.3 EzcContainer
This is the main class of the EzcContainer implementation. Components are added to the container,
through the method addComponent(), typically (but not necessarily) during application initialization, and
are used, explicitly, by the application through the getComponent method of the container during
application runtime, or implicitly as a result of being a dependency to another component.

An EzcContainer is responsible for:

 Date: 2004-08-19
: Revision: DRAFT
 Page 4 of 14

• holding a registry of components, where each component is uniquely identified using a key
(java.lang.String).

• creating and initializing component instances (For this it depends on having access to the
application specific callbacks located in a ContainerContext).

• Wire components together based upon their declared dependencies. (For this it depends on
having access to the application specific callbacks located in ContainerContext)

• Providing the Business Application, via a Container Holder, with access to components not
marked as private.

2.2.3.1 The addComponent method
The only way to add a component to an EzcContainer is through the addComponent method. Once a
component is added to the container it can be used by either non-component application code via the
getComponent method (for public components) or by private components which have declared a
dependency upon it – and therefore will be able to reference it via a ComponentContext. After each call
to addComponent, a consistency check is performed to assure that all specified interfaces are in fact
implemented and that all declared dependencies are satisfiable by components added prior to this
component.

If the component cannot be added, an EzcException will be thrown. Reasons for not being able to add
a component include:

 Duplicate or invalid key

 Unsatisfiable dependencies

The table below describes the parameters accepted by the addComponent method.

key
(java.lang.String)

The key is a unique identifier for the component in this container.

implClass
(java.lang.Class)

Class providing the implementation for the component

features (String) Features are a way of controlling various aspects of a components behavior.

The features of a component are specified by concatenating together the
desired combination of the following constants, which are defined in the
EzcContainer class (e.g.
FEATURE_PRIVATE+FEATURE_SINGLETON+FEATURE_LAZY)

If no features are to be specified, either null or an empty String may be
entered.

FEATURE_PRIVATE

Only public (=non-Private) components may be accessed by code not
managed by the container.

If getComponent(key) is called for a component which was marked
as private, no component will be returned and an EzcException will be
thrown.

Private components are only accessible as dependencies for other
components (via a ComponentContext)

FEATURE_SINGLETON

By default, a new instance of a component is created on each request
(requests can be explicitly via method getComponent or implicitly via
a dependency exposed by a ComponentContext). By specifying this
feature, the behavior changes so that one single instance is reused for

 Date: 2004-08-19
: Revision: DRAFT
 Page 5 of 14

all requests. The component will act as a singleton relative to its
container.

FEATURE_LAZY

If this feature is specified, instantiation of actual component instances
will be done in lazy mode. This means that instantiation is deferred until
the first request for one of the components service methods is made. A
client will hold a reference to a Proxy which instantiates the real
component when it is first needed.

dependencies
(java.util.Map of
(String,Object))

Declares the dependencies for this component.

The dependencies Map consists of (localKey,
globalKeyOrDependantObject) pairs representing the dependencies for
the component. The dependencies declared here are used by the
EzcContainer when generating a ComponentContext for use by the
ContainerContext, on behalf of the EzcContainer, at component
instantiation.

localKey is the name through which the EzcContainer, via
ComponentContext, will expose a dependency to a component.

globalKeyOrDependantObject refers to another component (in the same
container) by its key or provides configuration to the component in the form of
an arbitrary Java Objects (Objects not managed by the container).

If globalKeyOrDependantObject is a String, it is interpreted as the key of
a component in the container and is used to provide access to that component.
If globalKeyOrDependantObject is anything but a String, it is used as a
dependency on an arbitrary Object.

It is true that this “magic” meaning of String makes it impossible to declare a
dependency to a String object since it will be interpreted as a component
reference. The decision was made in order to simplify the API needed for
adding components to the container, and is assumed to have little or no
negative effects in practice.

The following examples illustrates how different kinds of dependencies can be
expressed:

An entry: (“userManager”,”LdapUserManager”) will cause the
component with key LdapUserManager to be accessible as the local
key userManager. Note how the LdapUserManager could be replaced
by e.g. a DbUserManager without changing the component
implementation.

Entry(“config”,this.getClass().getResourceAsStream(“config.props))
will cause the contents of the file config.props to be accessible for
local key config. When the component gets hold of the
InputStream it can read and parse it into e.g. a
java.util.Properties instance.

The use of a local key provides a level of indirection between the component
implementation class and the component keys in the container. Component
implementations must know which local keys they require to have as
dependencies, but need no knowledge about which components they are
mapped to.

Nothing stops the same component to be referred twice, by different local keys.
Consider, for example, a component modeling a network connection, lets call it

 Date: 2004-08-19
: Revision: DRAFT
 Page 6 of 14

NetworkConnection. Assume that the network connection has primary and
secondary DNS servers but that there currently only exists one physical server
(which is modeled by a class DnsServer and registered as a component with
key=theOnlyDns.

DNS dependencies for the network connection can be declared as follows:

(“primaryDns”, “theOnlyDns”)

(“secondaryDns”, “theOnlyDns”)

This scheme will make it possible to start using different DNS servers once
they exist – without having to change the NetworkConnection class.

As the example above illustrates, the localKey can be thought of as stating
the role or association name played by the dependent object relative to the
component.

interfaces
(Collection of
java.lang.Class)

One or more interfaces which are to be exposed for the component.

All interfaces given here must also be implemented by implClass.

When a client uses a component from the container he will not interact directly
with the component instance, but via a Dynamic Proxy which exposes only the
declared interfaces listed here.

This makes it possible to have setter methods on the implementation class
used for injecting dependencies but avoid exposing those methods by not
including them in one of the interfaces.

2.2.4 EzcContainerUtils
EzcContainerUtils provides static methods to facilitate configuration of an EzcContainer using Groovy
scripting. Initiation using Groovy is covered in chapter 3, “Configuring the EzcContainer using Groovy”.

2.2.5 ComponentContext
For each registered component, the container provides instances of the component with access to
dependencies (other component instances) and configuration (regular Java objects, such as instances of
java.lang.Properties) through the ComponentContext interface.

ComponentContext is the mechanism used by the container to expose (via the ContainerContext) to
individual components instances of those and only those other components (or ordinary objects) it
depends on.

Depending on the ContainerContext implementation in use, component instances may not have
direct references to their ComponentContexts but rather be provided with their dependent components
via some other mechanism – such as JavaBean property setters.

2.2.6 Component
The EzcContainer does not impose or assume any definition of what constitutes a component in the
context of a particular Business Application except that each component must have it’s services
exposed via one or more interfaces in the Java programming language and must be able to
represent by one Java class. That is, a component may consist of any number of classes and
interfaces, but it can only expose functionality (to code outside of the component) via one specific class
which acts as a facade for the component. The strict requirement for using Interfaces is caused by the
fact that all component instances handled by the EzcContainer will make use of the Java’s dynamic proxy

 Date: 2004-08-19
: Revision: DRAFT
 Page 7 of 14

feature when creating component instances – each component instance will be accessed via a dynamic
proxy.

Your applications definition of what a component is will need to be reflected in the implementation of the
method createInstance of the ContainerContext supplied at container creation. For example: If
you have decided for your application that all components must extend the (fictive) class
MyAppComponentBase, which has a method init(Properties) and have a no-argument
constructor, then your createInstance method can safely assume these things to be true about the
classes it receives as input.

When designing EzcContainer, the anticipated kind of component to be used with the container has been
the kind used to divide functionality of an application into coherent and loosely coupled units. (example
component names may be: InventoryManagement, UserRespository, OrderManagement).

Although not technically impossible, the focus has not been to create a container where each and every
class participating in an application is to be treated as components. For example, the main intention is not
that domain objects, such as, for example, UserAccount, Order, OrderItem, Product are made
components of the container. Instead, [instances of] such classes are meant to be managed (created,
located, updated, deleted) by components such as InventoryManagement, UserRespository and
OrderManagement.

2.2.7 Container Holder and Container Invoker
The Container Holder and Container Invoker are not classes provided by the EzcContainer tool. They
rather represent roles played by classes belonging to a Business Application. The existence of an
Container Holder or Container Invoker are not in any way required in order to use EzcContainer but are
presented here as a way of illustrating how EzcContainer can be used in an application.

• The Container Holder represents the part of a Business Application functionality which are
managed by the EzcContainer and allows code not belonging to a class or component managed
by the container to invoke components in the container. The Container Holder typically will have
methods for accessing the public components of an EzcContainer and thus provide an entry-point
to the web of components managed by the container. The Container Holder is responsible for
creating, initializing and holding the EzcContainer. It also has the responsibility of invoking the
public components of the container on behalf of the Container Invoker. The Application is typically
the only object with a reference to the EzcContainer.

• The Container Invoker represents some piece of a Business Application that cannot be a
component managed by the EzcContainer. One reason for not being able to treat a certain object
as a component of the EzcContainer is that it has its creation managed by some other framework
or container. This, for example, is the case for Java Servlets. If you are building a web application
using the EzcContainer, and an MVC framework such as Jakarta Struts, the Container Invoker
may be the Struts Actions being executed when users make HTTP requests. In the Struts case
(or equivalently if other MVC framework is used), the Actions will receive the request and as soon
as possible hand over to a component in the container to perform the requested function.

2.3 Adding and Using Components (Dynamic View)
This section provides a walkthrough illustrating the steps typically involved in initiation and use of an
EzcContainer within a Business Application.

In the example below, the same Java class and exposed interface (TestComponentImpl.class and
TestComponent.class) are used for all components. The interface TestComponent has only one
method, called invoke, which does nothing except recursively invokes all its dependent components.
Although not very useful in a real application, this behavior is useful as it can be used to produce a trace
printout listing the order in which component instances are created and invoked.

 Date: 2004-08-19
: Revision: DRAFT
 Page 8 of 14

Also, it is probably uncommon in a real application for all components to be instantiated using the same
class, as is the case in this example. However, this stresses the fact that a component is not identified by
its class or interface, but by the key with which it was added to the container.

In Listing 1 contains java code used in the illustration of the course of events taking place when initiating
and using an EzcContainer.

Listing 1 Java code showing creation, initialization and use of an EzcContainer

1| // PART 1 – Creating container and container context
2| // ==
1| ContainerContext ctx = new MyContainerContext();
2| EzcContainer c = new EzcContainer(ctx);
3|
4| // PART 2 – Adding components to the container
5| // ==
6|
7| // Tracker is an example of a non-component object made available to
8| // (all) components in the container as a dependency
9| ArrayList tracker = new ArrayList();
10|
11| // All components expose the same interface
12| final List interfaces = new ArrayList();
13| interfaces.add(TestComponent.class);
14|
15| { // ===
16| final HashMap dependencies = new HashMap();
17| dependencies.put("tracker", tracker);
18| c.addComponent("comp5", TestComponentImpl.class, interfaces, ""
19| + EzcContainer.FEATURE_PRIVATE
20| + EzcContainer.FEATURE_SINGLETON, dependencies);
21| }{ // ===
22| final HashMap dependencies = new HashMap();
23| dependencies.put("tracker", tracker);
24| c.addComponent("comp3", TestComponentImpl.class, interfaces,
25| EzcContainer.FEATURE_PRIVATE, dependencies);
26| }{ // ===
27| final HashMap dependencies = new HashMap();
28| dependencies.put("tracker", tracker);
29| dependencies.put("a", "comp5");
30| dependencies.put("b", "comp3");
31| c.addComponent("comp1", TestComponentImpl.class, interfaces,
32| EzcContainer.FEATURE_SINGLETON +
33| EzcContainer.FEATURE_PRIVATE, dependencies);
34| }{ // ===
35| final HashMap dependencies = new HashMap();
36| dependencies.put("tracker", tracker);
37| dependencies.put("a", "comp1");
38| dependencies.put("b", "comp3");
39| dependencies.put("c", "comp5");
40| c.addComponent("comp2", TestComponentImpl.class, interfaces,
41| EzcContainer.FEATURE_LAZY +
42| EzcContainer.FEATURE_PRIVATE,dependencies);
43| }{ // ===
44| final HashMap dependencies = new HashMap();
45| dependencies.put("tracker", tracker);
46| dependencies.put("a", "comp3");
47| dependencies.put("b", "comp3");
48| dependencies.put("c", "comp2");
49| c.addComponent("comp4", TestComponentImpl.class, interfaces, "",
50| dependencies);
51| }
52| // PART 3 – referencing and invoking component
53| // ==
54| TestComponent comp = (TestComponent) c.getComponent("comp4");
55| comp.invoke();

 Date: 2004-08-19
: Revision: DRAFT
 Page 9 of 14

2.3.1 Starting the application
This section shows what happens during startup of the business application.

At some point in the overall initiation of the Business Application, a Container Holder, (as defined in
section 2.2.7) is created. The Container Holder is responsible for creating, adding components to, and
holding an EzcContainer and for providing an application-specific ContainerContext to the EzcContainer.

After executing Part 1 and Part 2 of Listing 1, there will be a container holding metadata for a component
model as shown in Figure 1. The Java code for adding of components to the container (Part 2 of Listing
1) is a bit impractical and clumsy – configuring the container using Groovy, see chapter 3, is much more
convenient.

Note that no component instances will be created yet. Components are created when they are referenced
(or when they are invoked, if lazy instantiation is used) for the first time (either by being called upon via
getComponent or by virtue of being a dependency to another component).

Figure 1 Metadata for the example component model

2.3.2 Invoking components in the container
This section shows how components are instantiated as a result of referring and invoking components in
the container.

Part 3 of Listing 1 above, shows how comp4 is referenced and subsequently invoked. Obtaining a
reference to a component, will trigger the creation of a graph of component instances for all its
dependencies, both direct and indirect (X has an indirect dependency on Z if X is dependent on Y and Y
is dependent on Z). The graph in Figure 2 shows the instance graph resulting from referencing and
invoking comp4 for the first time.

 Date: 2004-08-19
: Revision: DRAFT
 Page 10 of 14

Figure 2 Component instance graph resulting from referencing and invoking comp4.

Note that, since comp2 is using lazy instantiation (see Listing 1, line 41|), the component instances in the
grey area will not be created until comp2 is invoked for the first time. This fact can be further illustrated by
Listing 2 which shows all component instantiations and invocation in the order they occur when executing
the getComponent/invoke operations.

Listing 2 The order in which component instances are created and invoked.

2.4 Component naming, hierarchy and sub-containers
The EzcContainer supports the concept of sub-containers. An EzcContainer (subContainer) may be
added to another container (topContainer) using the method addContainer(prefix,container).
This will cause all (non-private) components of subContainer to be accessible as components of
topContainer by prepending a prefix to their component keys.

1| Creating Instance: comp3-1
2| Creating Instance: comp4-0
3| Invoking: comp4-0
4| Invoking: comp3-0
5| Creating Instance: comp3-2
6| Creating Instance: comp5-0
7| Creating Instance: comp1-0
8| Creating Instance: comp3-3
9| Creating Instance: comp2-0
10| Invoking: comp2-0
11| Invoking: comp1-0
12| Invoking: comp5-0
13| Invoking: comp3-2
14| Invoking: comp5-0
15| Invoking: comp3-3
16| Invoking: comp3-1

 Date: 2004-08-19
: Revision: DRAFT
 Page 11 of 14

If subContainer contains the components foo and bar and are added to topContainer using
topContainer.addContainer(“sub”,subContainer)the foo and bar components may be
retrieved from topContainer using the prefix “sub”.

getComponent(“sub-foo”)

getComponent(“sub-bar”)

Note how the character “-“ is used as a special delimiter for container prefix and component key. As a
result of this convention, the “-“ characted are not allowed in component keys.

Components in topContainer may of course specify dependencies to components located in
subContainers, just as they would to components in the same container. In order for this to work, the
subContainer must be configured and added to topContainer before adding any components (to
topContainer) which depends on subContainer components, since all stated dependencies are validated
directly.

It is not possible for components in subContainer to access topContainer components.

Containers may be nested in any number of levels, but not so that cycles are created. For example, the
following would be illegal:

top.addContainer(“sub,sub);

sub.addContainer(“top”,top); // ILLEGAL

Figure 3 shows how three separate containers are “merged” into one, which is nested in two levels, using
multiple calls to addContainer. The left part of figure also shows how the code needed to access each
components looks, before and after merging their containers.looking.

Figure 3

The use of sub-containers can be a convenient way of supporting the partitioning of a Business
Application into subsystems or layers. One could for instance place all “business logic” in one container
while using another for presentation components.

Note also that if nested EzcContainers are used in a Business Application, they may employ different
component definitions (achieved by using different ContainerContexts).

 Date: 2004-08-19
: Revision: DRAFT
 Page 12 of 14

3. Configuring the EzcContainer using Groovy
Groovy is a scripting language for the JVM. It is undergoing standardization under the Java Community
Process (JSR-241). The following description of Groovy is found at the Groovy Home Page
(http://groovy.codehaus.org):

Groovy is a new agile dynamic language for the JVM combining lots of great features from
languages like Python, Ruby and Smalltalk and making them available to the Java developers
using a Java-like syntax.

Groovy is designed to help you get things done on the Java platform in a quicker, more concise
and fun way - bringing the power of Python and Ruby inside the Java platform.

Groovy can be used as an alternative compiler to javac to generate standard Java bytecode to be
used by any Java project or it can be used dynamically as an alternative language such as for
scripting Java objects, templating or writing unit test cases.

EzcContainer uses Groovy as it preferred mechanism for configuration (however it may of course also be
configured through plain Java). The main reason to use a scripting language for this kind of information is
to enable configuration type information to be changed without recompiling the application.

By using Groovy (or another “Turing complete” scripting language) rather than inventing our own (XML)
format, a lot of work (defining, coding and documenting yet another language is not that inspiring a task)
can be saved. But laziness is not the only reason: the use of a real scripting language makes it possible
for users to extend and adapt the initialization procedure as needed. Although there is only one way (the
method addComponent) to add components to the container, it is an easy task defining your own helper
functions using Groovy. Groovy is a powerful way of customizing the syntax of initialization to personal
needs and preferences.

3.1 Simple Example
The listing below shows how a very simple groovy script for initializing an EzcContainer may look. Note
how the object called “top” is a reference to an EzcContainer placed in the context of the Groovy Script by
the invoking Java code (the method initContainer of EzcContainerUtils). From the view-point of
the Groovy script “top” is the container to which components will be added.

Listing 3 Contents of (fictive) file my-app-config.groovy

The following snippet shows how an application is initialized based upon the component definitions in the
listing above:

1| top.addComponent(“userManager”, LdapUserManager.class, [UserManager.class],
SINGLETON+LAZY, [”ldapServer”: ”primaryLdap”])

2| top.addComponent(“primaryLdap”, IbmDirectoryServer.class, [LdapServer.class],
PRIVATE+SINGLETON+LAZY, [“config”: [“port”: 389,

3| “host”: “foo.bar.com”]])

 Date: 2004-08-19
: Revision: DRAFT
 Page 13 of 14

Listing 4 Code for initiating and accessing and incoking components

The code above reads component definitions and configuration from a file called my-app-
config.groovy and with the help of EzcContainerUtils an EzcContainer with the correct
component model is created. The code also shows how the main method obtains a reference to the
component “userManager”. After casting this reference to the correct class, it may be used to invoke
validateUser which does something useful.

Note how the main method can be considered being the Container Holder (as defined in section 2.2.7)
and the lack of a Container Invoker.

3.2 Larger Example
This sections show a larger example of a groovy script used for container initialization.

4. Integraing the EzcContainer in a Business
Application
This chapter describes the easy steps which must be performed when adopting the EzcContainer in a
Business Application.

1. components has to live by

Component Definition <-> ContainerContext

Good principle to let your own application provide at

5. Notes/Ideas on how the EzcContainer can be used
Some unsorted tips and ideas on the use of the EzcContainer.

• Use more than one container in one application.

• It is worth mentioning that using more than one container is containers

1| public static void main(String[] argv) {
2| // MyAppContainerContext is an application-specific class
3| MyAppContainerContext containerCtx = new MyAppContainerContext();
4| EzcContainer c = new EzcContainer(containerCtx);
5| EzcContainerUtils.initContainer(c,”my-app-config.groovy”);
6| // use container to access components and invoke their services
7| UserManager userMgr = (UserManager)c.getComponent(“userManager”);
8|
9| String user = argv[0];
10| String password = argv[1];
11| if(userMgr.validateUser(user,password)) {
12| System.out.println(”user validated!”);
13|
14| } else {
15| System.out.println(”failed validating user...”);
16|
17| }
18| }

1| FIXME
2|

 Date: 2004-08-19
: Revision: DRAFT
 Page 14 of 14

• As a basis for building more advanced containers.

• If using a Command pattern architecture, each Command may be added as a component to an
EzcContainer and have commands relying on the execution of other commands may get those as

• Use sub-containers to integrate subsystems

• As with any framework, it may be worthwhile to minimize the concrete dependencies on it in your
application code.

